### **CIPARS Human Surveillance Component**

Salmonella and Campylobacter AMR – 2024 Results

Presented by Melissa MacKinnon, PhD, MSc, DACVS-LA, DVM

**World Antimicrobial Resistance Awareness Week** 

November 18, 2025

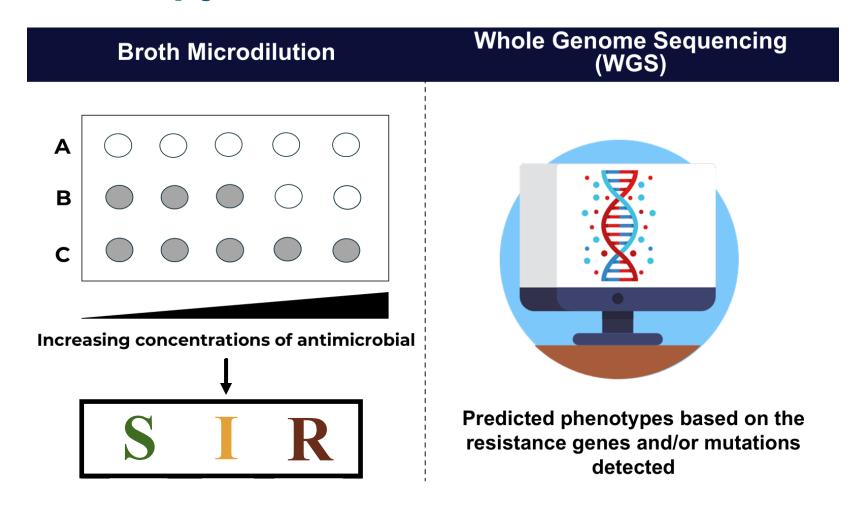




### **Agenda**

- Background
- Salmonella
- Campylobacter
- Questions

### AMR descriptions and colour gradient used throughout presentation


| Description          | Resistance (%) | Gradient |  |  |
|----------------------|----------------|----------|--|--|
| 20 or fewer isolates | Any %          |          |  |  |
| Rare                 | < 0.1%         |          |  |  |
| Very low             | 0.1% to 1%     |          |  |  |
| Low                  | >1% to 10%     |          |  |  |
| Moderate             | >10% to 20%    |          |  |  |
| High                 | >20% to 50%    |          |  |  |
| Very High            | >50% to 70%    |          |  |  |
| Extremely High       | >70%           |          |  |  |

https://www.efsa.europa.eu/en/efsajournal/pub/7867

### **Methods for AMR evaluation**

### Campylobacter

### Salmonella



### **Methods for AMR Interpretation**

### Campylobacter



For CIPROFLOXACIN, use CLSI breakpoint to classify MICs as either susceptible, intermediate or resistant



Report as resistant







For **CIPROFLOXACIN**,

cannot discriminate between resistant and intermediate using the resistance genes



Report as not susceptible



NOTE: both "not susceptible to ciprofloxacin" and "resistant to ciprofloxacin" are referred to as "resistant to ciprofloxacin" for the remainder of the presentation CIPA

### Human Salmonella



### Most non-typhoidal *Salmonella* infections do NOT require treatment with antimicrobials.

- Non-typhoidal Salmonella have an animal reservoir and typhoidal Salmonella do not
- Non-typhoidal Salmonella infections most commonly cause self-limiting diarrhea
  - Treatment with antimicrobials is not required or recommended
- Treatment with antimicrobials is considered:
  - When clinical signs are severe or prolonged
    - >6 diarrheal episodes/day, bloody diarrhea, diarrhea lasting >1 week, persistent fever
  - When patient is immunocompromised
  - When patient is at increased risk for invasive infection
  - Culture and susceptibility testing directed treatment options include ciprofloxacin, ceftriaxone, azithromycin, trimethoprim-sulfamethoxazole or amoxicillin

### Invasive Salmonella infections require treatment with antimicrobials.

• Typhoidal Salmonella infections most commonly cause bloodstream infections

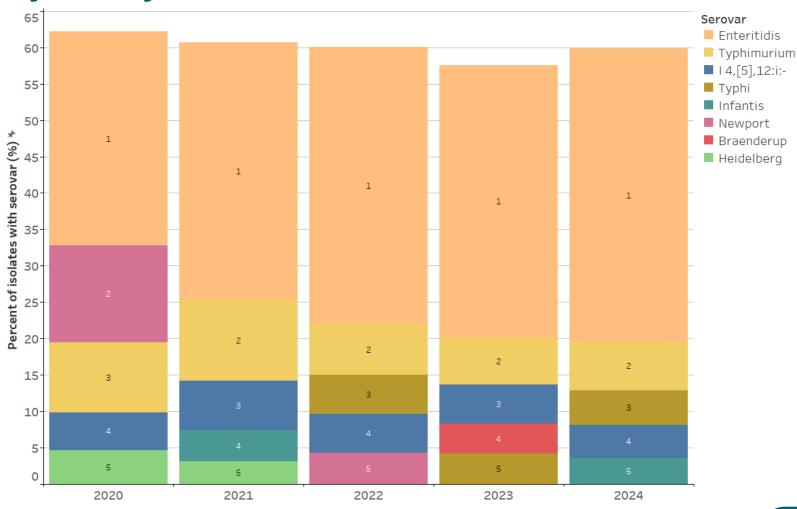
- Invasive infections including bloodstream infections can occur with non-typhoidal Salmonella infections, but are less common than gastrointestinal infections
  - Treatment with antimicrobials is required
  - Culture and susceptibility testing directed treatment options include ceftriaxone, ciprofloxacin, azithromycin, ampicillin or trimethoprim-sulfamethoxazole

## Salmonella has the highest incidence rate of the enteric pathogens tracked by NESP.

Incidence rates of Canadians with Salmonella in 2024

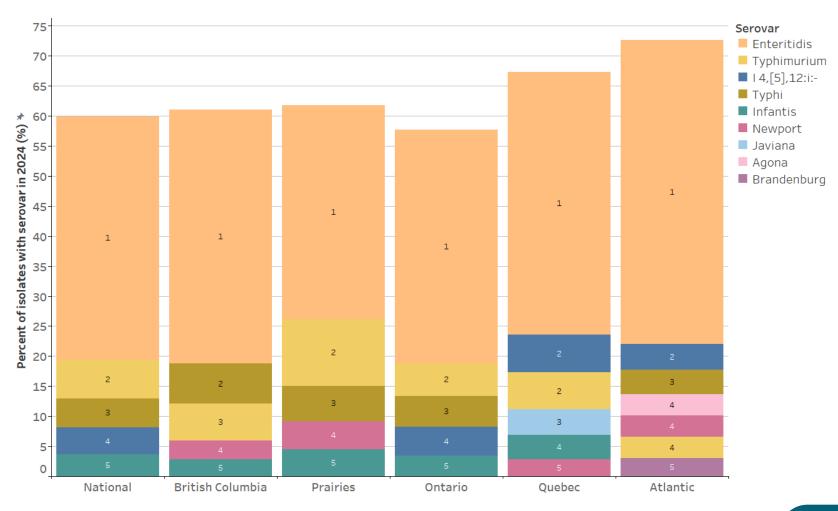
|                          | 2024 Incidence Rates*<br>(cases/100,000 population) |
|--------------------------|-----------------------------------------------------|
| Total Salmonella         | 15.89                                               |
| Non-typhoidal Salmonella | 14.84                                               |
| Typhoidal Salmonella     | 1.06                                                |

<sup>\*2024</sup> incidence rates are preliminary and subject to change with final validation of the data


Source of data - National Enteric Surveillance Program (NESP) - Canada.ca

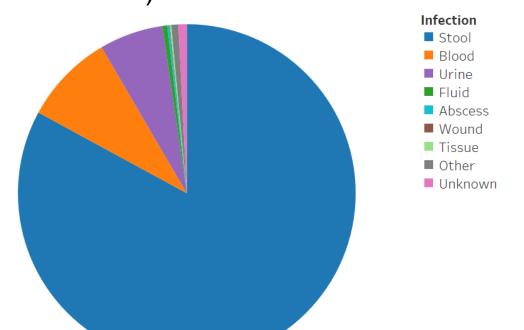
## CIPARS enhanced passive human *Salmonella* surveillance reports temporal and regional variation in the prevalence of AMR.

- Reporting of Salmonella infections is mandatory through laboratory notification of reportable diseases to the National Notifiable Disease Reporting System
  - However, forwarding of Salmonella isolates to provincial reference laboratories is voluntary and passive
- Isolates undergo whole genome sequencing
  - Predictive serotyping with SISTR
  - AMR prediction using Staramr
    - Validated for 14 antimicrobials in 11 antimicrobial classes (2020 to present)
- Data from 2020-2024 are presented

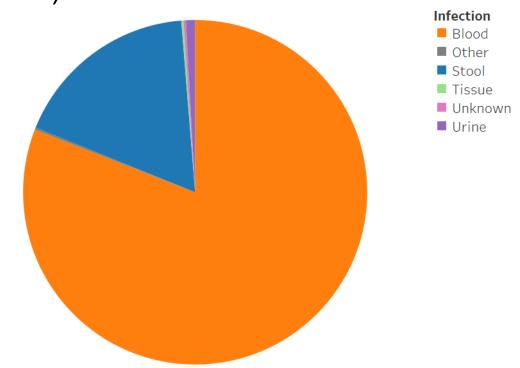

## S. Enteritidis has been the top serovar nationally since 2005; ranking of other serovars varied from year to year.

- In 2024, 40% of the isolates were *S.* Enteritidis
- S. Heidelberg was not in the top 10 serovars nationally in 2023 and 2024
- There are temporal differences in the frequency of serovars




# S. Enteritidis was consistently the top serovar in all regions in 2024; ranking of other serovars varied from region to region.

- S. Enteritidis was the top serovar in all regions in 2024
- There are regional differences in the frequency of serovars




# Non-typhoidal *Salmonella* are generally from non-invasive infections, whereas typhoidal *Salmonella* are generally from invasive infections.

 Non-typhoidal Salmonella predominantly from gastrointestinal infections (83% stool in 2024)

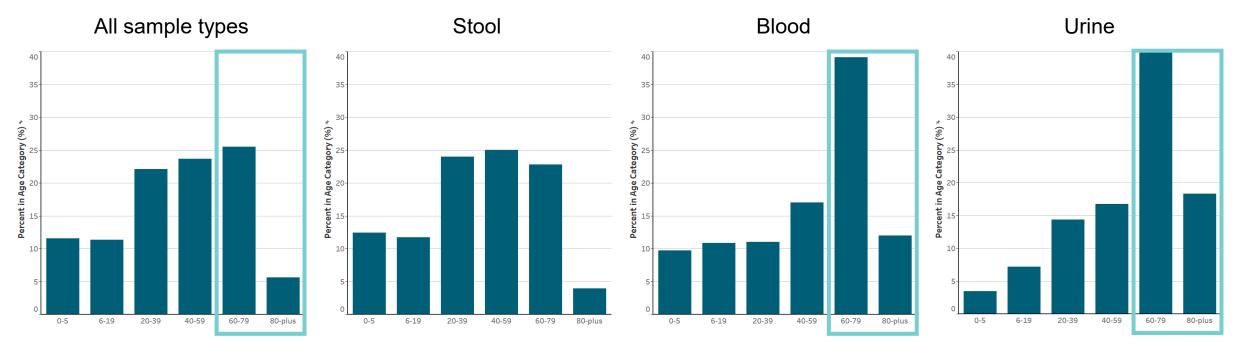


 Typhoidal Salmonella predominantly from bloodstream infections (81% blood in 2024)



#### More Salmonella invasive bloodstream infections in males than females.

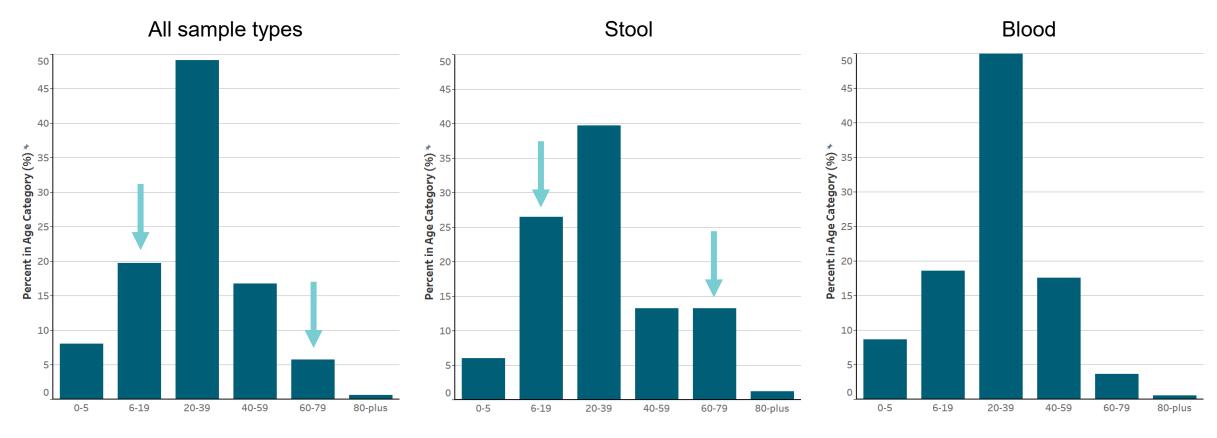
Distribution of sex and sample types in human Salmonella cases from 2024


| Salmonella    | Sex       | Sample Types |       |       |       |  |  |  |
|---------------|-----------|--------------|-------|-------|-------|--|--|--|
| Saimonena     | Sex       | All samples  | Stool | Blood | Urine |  |  |  |
|               | All cases | 93%          | 83%   | 9%    | 6%    |  |  |  |
| Non-typhoidal | Female    | 53%          | 53%   | 43%   | 74%   |  |  |  |
|               | Male      | 46%          | 47%   | 56%   | 25%   |  |  |  |
| Typhoidal     | All cases | 7%           | 18%   | 81%   | 1%    |  |  |  |
|               | Female    | 44%          | 53%   | 42%   | n=1   |  |  |  |
|               | Male      | 55%          | 46%   | 57%   | n=3   |  |  |  |

Note – unknown and other sample types, and unknown sexes are not shown

#### Human Non-typhoidal Salmonella – Age Category and Sample Type

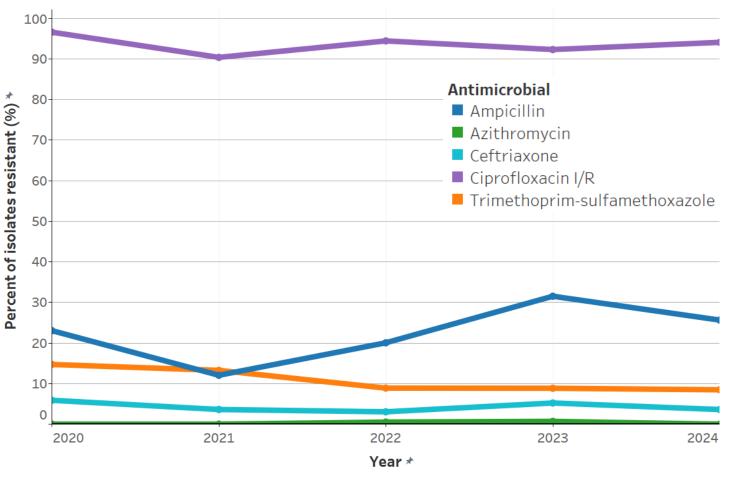
# More non-typhoidal *Salmonella* bloodstream and urinary tract infections in people over 60 years of age.


Distribution of age categories and sample types in human non-typhoidal Salmonella cases from 2024



Note – unknown and other sample types, and unknown ages are not shown

#### More typhoidal Salmonella infections in people 20 to 39 years of age.


Distribution of age categories and sample types in human typhoidal *Salmonella* cases from 2024

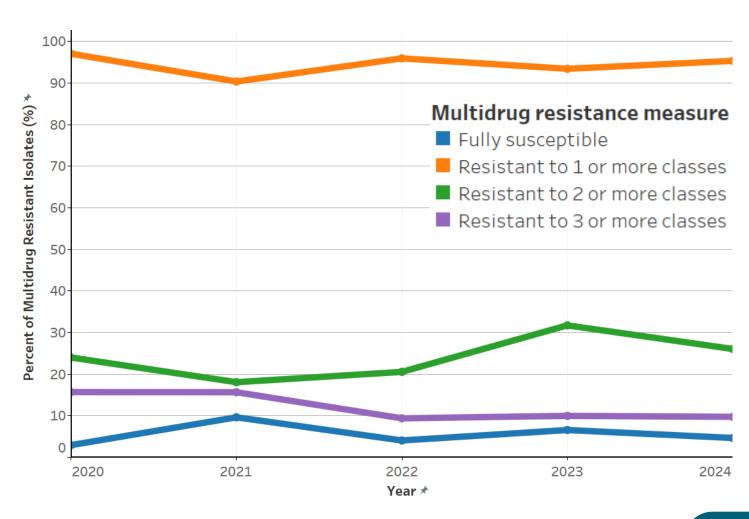


Note – unknown and other sample types, and unknown ages are not shown

### Extremely high resistance to ciprofloxacin has implications for treatment selection.

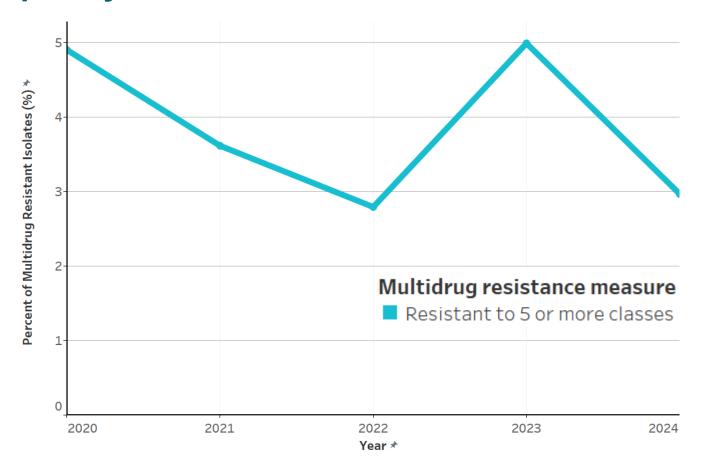
- Extremely high resistance to ciprofloxacin (ranging from 90% to 97%)
- Low resistance to ceftriaxone; decreased from 2020 (6%) to 2024 (4%)
- **High** resistance to ampicillin (2020; 23% and 2024; 26%) with variability between
- Moderate resistance to trimethoprimsulfamethoxazole decreased to low resistance (2020; 15% and 2024; 8%)
- **Very low** resistance to azithromycin in 2022 (0.5%) and 2023 (0.7%), no resistance reported in the other years




# Wide regional variation, sparse data and small numbers of isolates make interpretation of regional differences challenging.

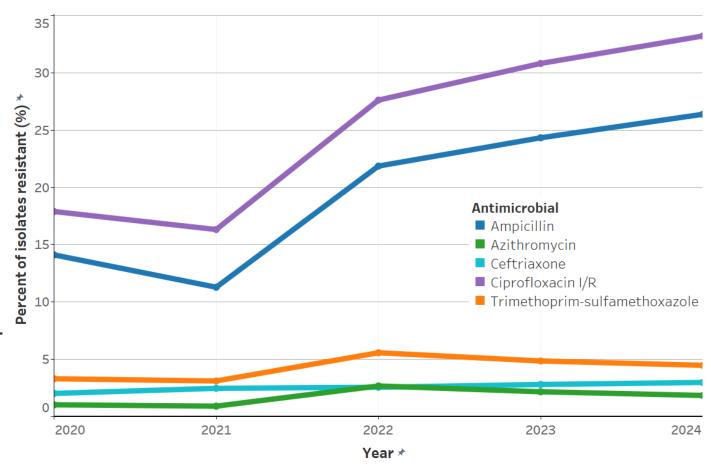
| Region           | 2020       |                   | 2021       |                   | 2022       |                   | 2023       |                   | 2024       |                   |
|------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| rtogion          | % R<br>SXT | Total<br>Isolates |
| National         | 15         | 204               | 13         | 83                | 9          | 394               | 9          | 441               | 9          | 472               |
| Atlantic         | -          | 0                 | 0          | 2                 | 25         | 8                 | 0          | 7                 | 8          | 24                |
| British Columbia | 6          | 32                | 11         | 19                | 3          | 76                | 1          | 99                | 4          | 93                |
| Ontario          | 11         | 124               | 11         | 46                | 10         | 204               | 9          | 231               | 11         | 219               |
| Prairies         | 41         | 34                | 9          | 11                | 8          | 85                | 15         | 79                | 4          | 110               |
| Quebec           | 0          | 14                | 60         | 5                 | 14         | 21                | 20         | 25                | 23         | 26                |

| Legend | 20 or fewer isolates | Rare<br>0-0.1% | Very low<br>0.1% to 1% | Low<br>>1% to 10% | Moderate >10% to 20% | High >20% to 50% | Very high >50% to 70% | Extremely high >70% |
|--------|----------------------|----------------|------------------------|-------------------|----------------------|------------------|-----------------------|---------------------|
|        |                      | 0-0.170        | 0.170 to 170           | ~170 tO 1070      | ~10% to 20%          | ~20% to 50%      | ~50% to 70%           | <b>~10</b> 70       |


### Few isolates fully susceptible and isolates predominantly resistant to 1 antimicrobial class.

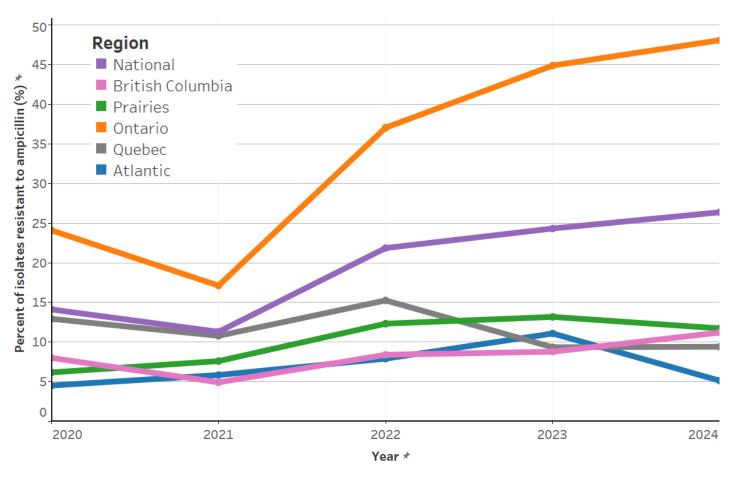
- Variable full susceptibility (ranging between 3% and 10%)
- Variable and high resistance to 2 or more classes (2020; 24% and 2024; 26%)
- Decreased from moderate to low resistance to 3 or more classes (2020; 16% and 2024; 10%)




## Maximum resistance between 2020 and 2024 was resistance to 5 antimicrobial classes and the frequency was low.

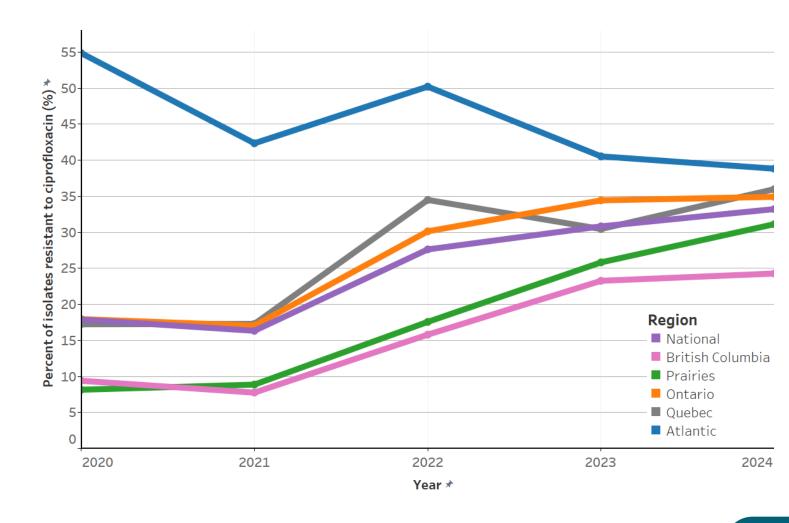
- Low resistance to 5 or more classes (2020; 5% and 2024; 3%)
- Patterns of resistance for 2024 isolates resistant to 5 classes
  - Folate pathway inhibitors, Macrolides, Penicillins, Phenicols and Quinolones
  - Cephalosporins, Folate pathway inhibitors, Penicillins, Phenicols and Quinolones
  - Folate pathway inhibitors, Penicillins,
     Phenicols, Quinolones and Tetracyclines
- Since 2020, no resistance to 6 or more classes




#### Resistance to ciprofloxacin and ampicillin continuing to increase.

- Moderate resistance to ciprofloxacin increased to high resistance (2020; 18% and 2024; 33%)
- Low and relatively stable resistance to ceftriaxone (ranging from 2% to 3%)
- Moderate resistance to ampicillin increased to high resistance (2020; 14% and 2023; 26%)
- **Low** and variable resistance to trimethoprimsulfamethoxazole (ranging from 3% to 6%)
- Low resistance to azithromycin increased between 2020 (1%) and 2022 (3%) and decreased slightly in 2024 (2%)

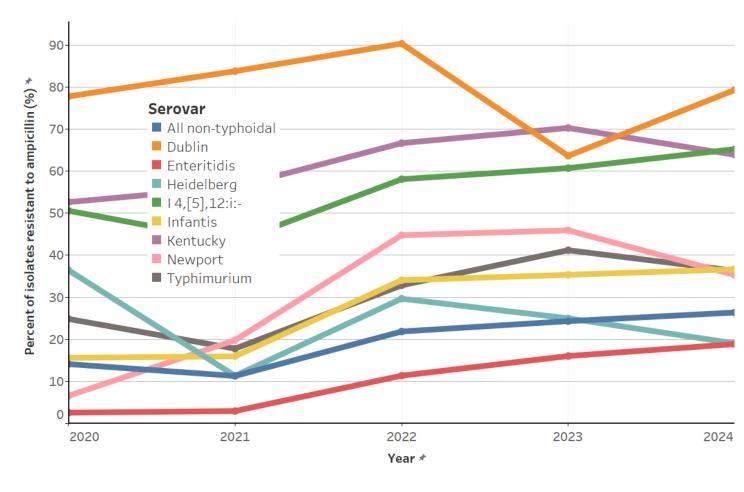



### Substantial regional variation in ampicillin resistance.

- Compared to the frequency of ampicillin resistance nationally
  - Ontario was higher since 2020
  - Québec was similar until 2021 and lower starting in 2022
  - The Prairies, British Columbia and the Atlantic provinces were lower since 2020

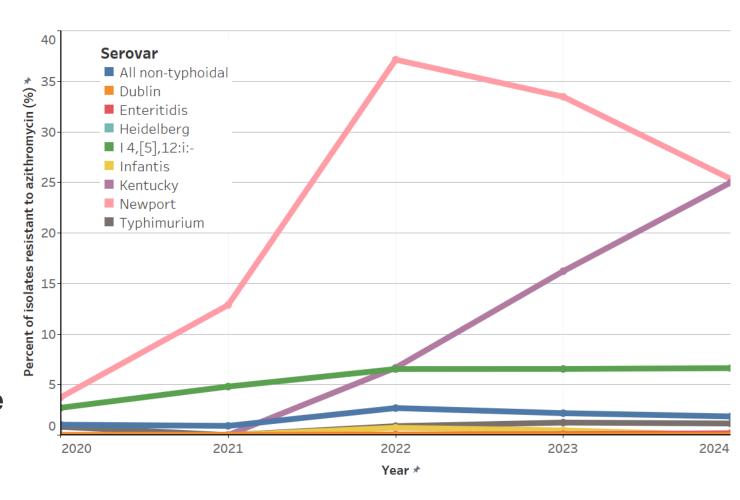


### Decreasing regional variation in ciprofloxacin resistance.


- Compared to the frequency of ciprofloxacin resistance nationally
  - The Atlantic provinces were higher
  - The Prairies and British Columbia were lower and followed a similar temporal trend with British Columbia remaining 9% lower in 2024

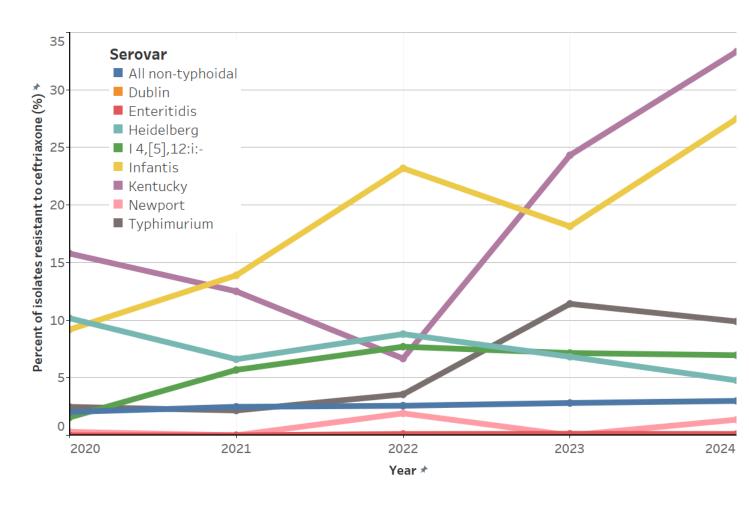


22


# High to extremely high ampicillin resistance in *S.* Dublin, *S.* Kentucky and *Salmonella* I 4,[5],12:i:-.

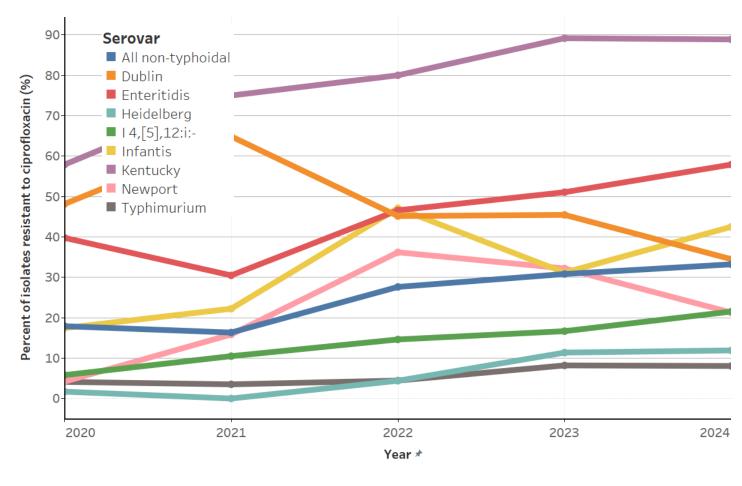
- Compared to the frequency of ampicillin resistance in all nontyphoidal serovars
  - S. Dublin, S. Kentucky and Salmonella I 4,[5],12:i:- were consistently substantially higher
  - S. Enteritidis was consistently lower




#### Azithromycin resistance increased to high in S. Newport and S. Kentucky.

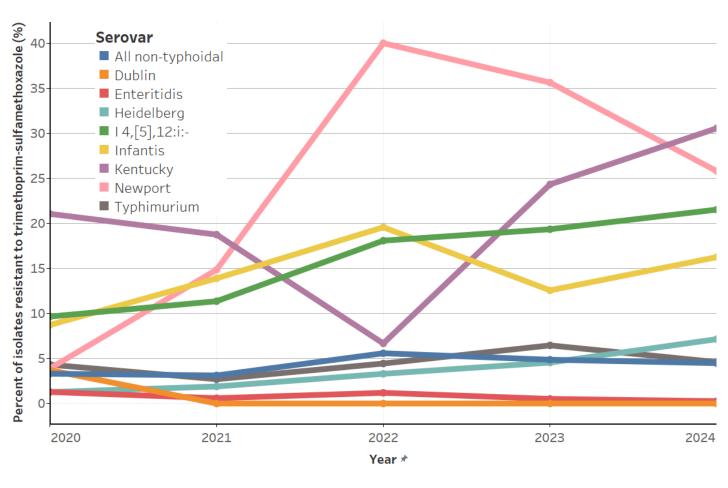
- Compared to the frequency of azithromycin resistance in all nontyphoidal serovars
  - S. Newport and S. Kentucky substantially increased to high resistance since 2020
  - Salmonella I 4,[5],12:i:- was
     higher but still low resistance




#### Ceftriaxone resistance increased to high in S. Kentucky and S. Infantis.

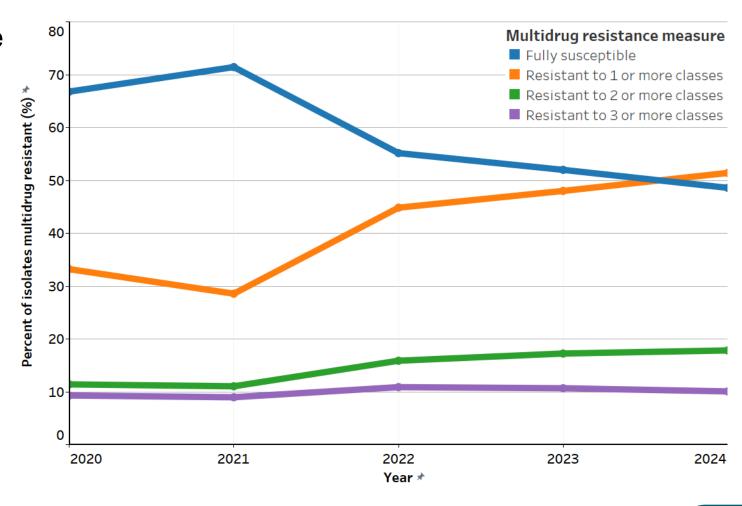
- Compared to the frequency of ceftriaxone resistance in all nontyphoidal serovars
  - S. Kentucky and S. Infantis substantially increased to high resistance since 2020
  - S. Typhimurium, Salmonella I 4,[5],12:i:- and S. Heidelberg were higher but moderate to low resistance




### Ciprofloxacin resistance is substantially higher in *S.* Kentucky and *S.* Enteritidis.

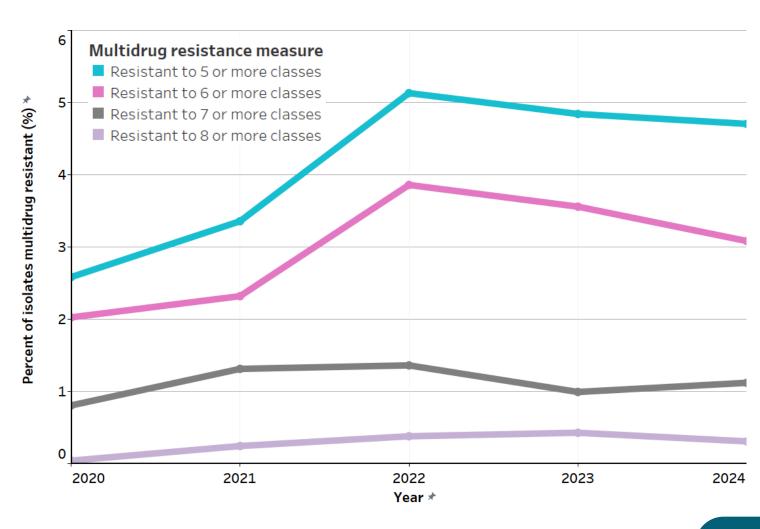
- Compared to the frequency of ciprofloxacin resistance in all nontyphoidal serovars
  - S. Kentucky and S. Enteritidis were substantially higher
  - Salmonella I 4,[5],12:i:-, S.
     Heidelberg and S.
     Typhimurium were consistently lower




### Trimethoprim-sulfamethoxazole resistance increased to high in *S.* Kentucky and *S.* Infantis.

- Compared to the frequency of trimethoprim-sulfamethoxazole resistance in all non-typhoidal serovars
  - S. Kentucky, S. Newport,
     Salmonella I 4,[5],12:i:- and
     S. Infantis were substantially
     higher
  - S. Dublin and S. Enteritidis were lower since 2021




#### Increasing resistance to 1 and 2 classes, and decreasing full susceptibility.

- Decreased full susceptibility since 2021 (2021; 71% and 2024; 49%)
- Moderate resistance to 2 or more classes, increased since 2021 (2021; 11% and 2024; 18%)
- Low to moderate resistance to 3 or more classes, relatively stable (2020; 9% and 2024; 10%)

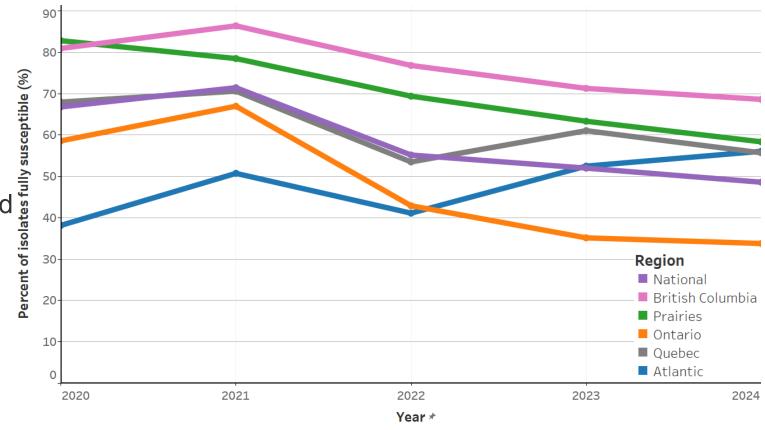


#### Resistance to 8 or more classes was rare to very low however reported.

- Low resistance to 5 or more classes, increased between 2020 (3%) and 2024 (5%)
- Low resistance to 6 or more classes (ranging from 2% to 4%)
- Very low to low and stable resistance to 7 or more classes (ranging from 0.8% to 1.4%)
- Rare to very low and stable resistance to 8 or more classes (ranging from 0 to 0.4%)

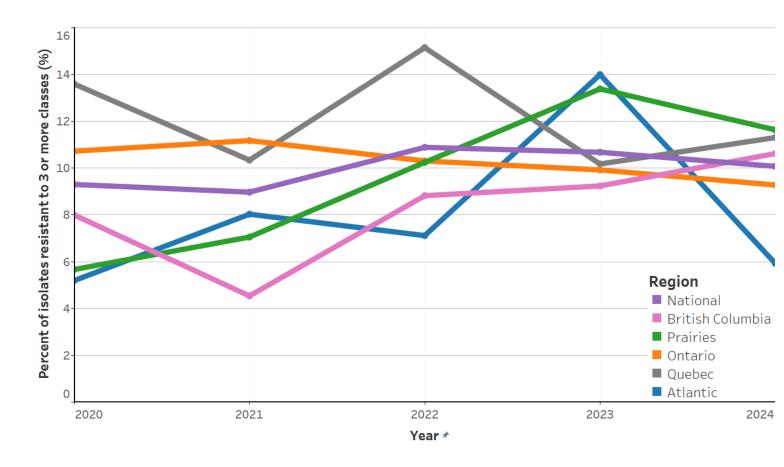


### Resistance to 9 classes including Category I antimicrobials was infrequent, only present in 4 isolates.


- Maximum resistance seen between 2020 and 2024 was resistance to 9 antimicrobial classes (n=4)
  - All 4 isolates detected resistance to the same antimicrobial classes: Aminoglycosides, Beta-lactamase inhibitor combinations, Cephalosporins, Folate pathway inhibitors, Macrolides, Penicillins, Phenicols, Quinolones and

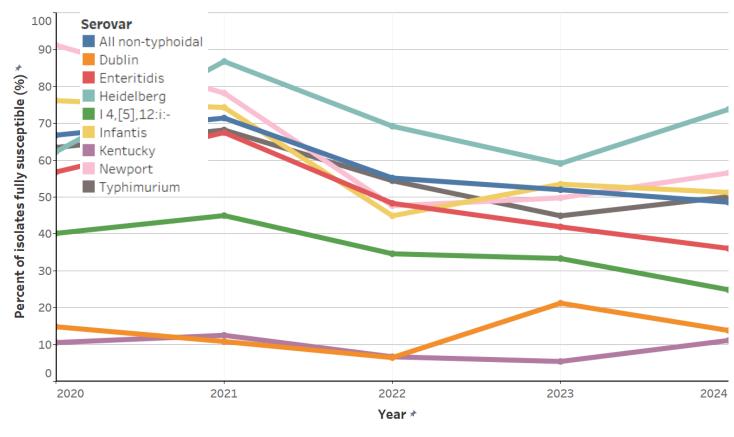
Tetracyclines

- All isolates detected resistance to 10 or 11 antimicrobials including 1 or 2 Category I antimicrobials
- Salmonella I 4,[5],12:i:- (n=2, 2022; Ontario and 2024; British Columbia), S. Thompson (n=1, 2022; Ontario) and S. Typhimurium (n=1, 2023; Quebec)


#### The Atlantic provinces had an increase in full susceptibility since 2020.

- Compared to the frequency of fully susceptible nationally
  - British Columbia and the Prairies were higher and followed a similar temporal trend
  - Ontario was lower
  - The Atlantic provinces and Quebec followed different temporal trends



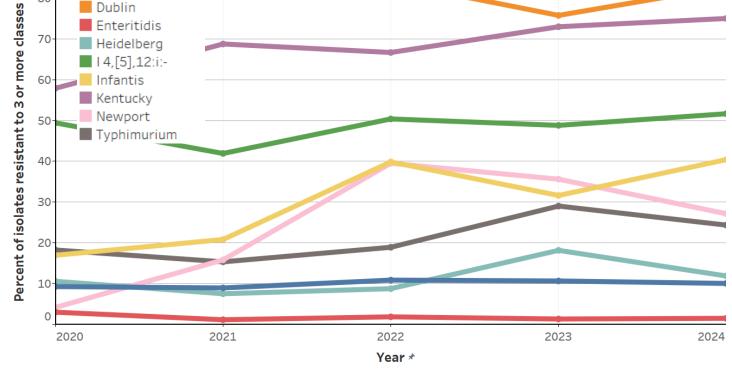

### Substantial regional variation in resistance to 3 or more antimicrobial classes.

 Regional temporal trends in resistance to 3 or more antimicrobial classes varied widely, which makes comparisons difficult



# Fully susceptible is substantially lower in *S.* Kentucky, *S.* Dublin and *Salmonella* I 4,[5],12:i:-.

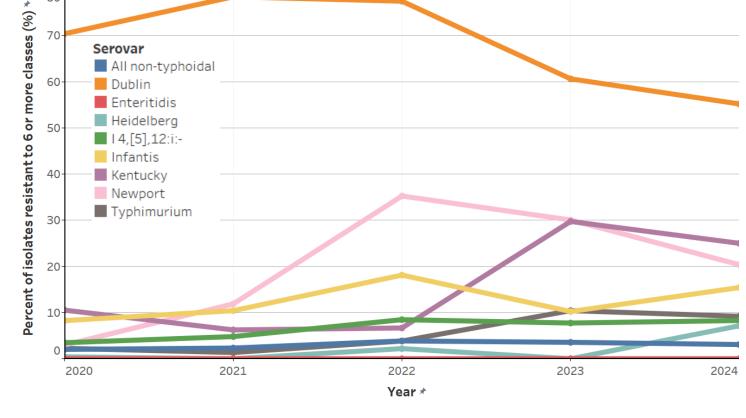
- Compared to the frequency of fully susceptible in all non-typhoidal serovars
  - S. Kentucky, S. Dublin and Salmonella I 4,[5],12:i:- were substantially lower
  - S. Enteritidis was also lower
  - S. Heidelberg was higher




#### Resistance to 3 or more antimicrobial classes is lower in S. Enteritidis.

Serovar

All non-typhoidal

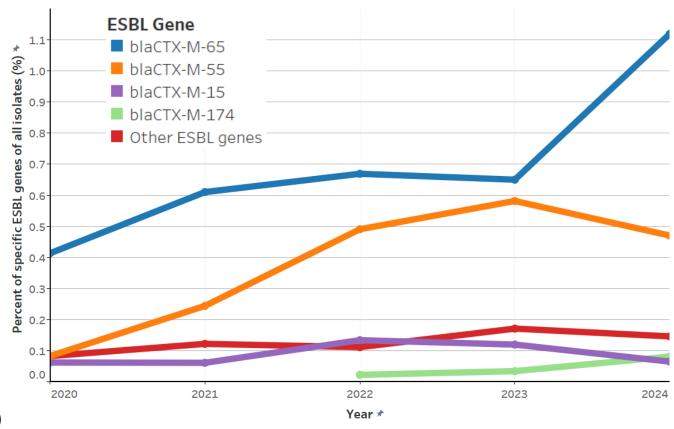

- Compared to the frequency of resistance to 3 or more classes in all non-typhoidal serovars
  - S. Dublin, S. Kentucky, S. Infantis and Salmonella I
     4,[5],12:i:- were substantially higher
  - S. Newport and S.
     Typhimurium were also higher



S. Enteritidis was lower

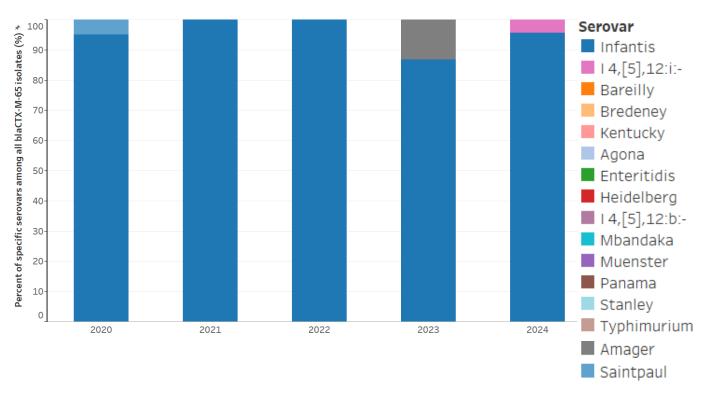
# Resistance to 6 or more antimicrobial classes is very high to extremely high in *S.* Dublin and not present in *S.* Enteritidis.

- Compared to the frequency of resistance to 6 or more classes in all non-typhoidal serovars
  - S. Dublin was substantially higher
  - S. Newport, S. Kentucky, S. Infantis and Salmonella I 4,[5],12:i:- were also higher

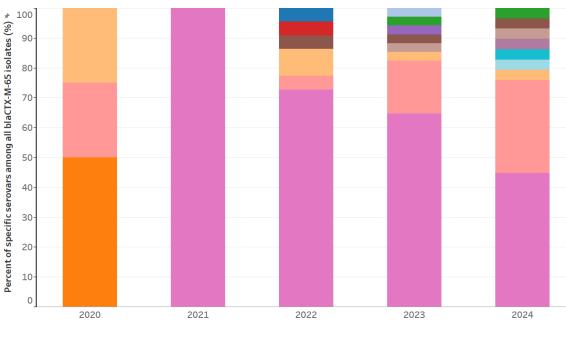



S. Enteritidis was lower

# Overall ESBL genes in human non-typhoidal *Salmonella* are increasing with $bla_{CTX-M-65}$ and $bla_{CTX-M-55}$ increasing.


- Top 4 ESBL genes in 2024 (of all isolates)
  - bla<sub>CTX-M-65</sub> increased between 2020 (0.41%) and 2024 (1.12%)
  - bla<sub>CTX-M-55</sub> increased between 2020 (0.08%) and 2024 (0.47%), yet decreased since 2023 (0.58%)
  - bla<sub>CTX-M-174</sub> detected in 2022 (0.02%)
     and increased in 2024 (0.08%)
  - bla<sub>CTX-M-15</sub> variable from 2020 to 2024 (ranging between 0.06% and 0.13%)
- Other ESBL genes detected (2020 to 2024)

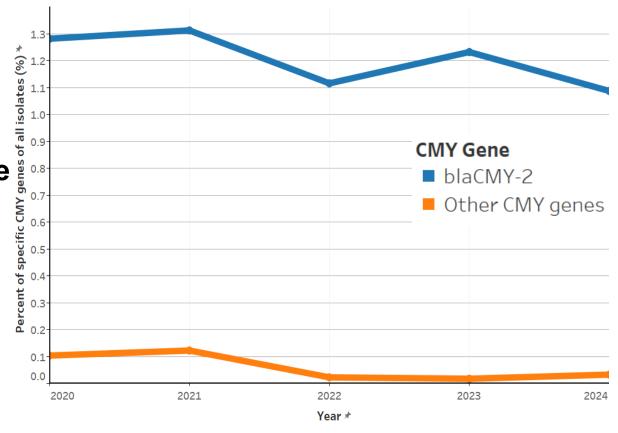





# bla<sub>CTX-M-65</sub> is mostly in *S.* Infantis and bla<sub>CTX-M-55</sub> is mostly in *Salmonella* I 4,[5],12:i:-.

• *bla*<sub>CTX-M-65</sub> predominately in *S.* Infantis




bla<sub>CTX-M-55</sub> predominately in Salmonella
 I 4,[5],12:i:-



# Overall *CMY* genes including *bla<sub>CMY-2</sub>* in human non-typhoidal *Salmonella* are stable.

- CMY genes stable between 2020 and 2024 (ranging between 1% and 1.5% of all isolates)
- bla<sub>CMY-2</sub>, the predominate CMY gene, **stable** between 2020 (1.3%) and 2024 (1.1%)
  - Mostly in S. Dublin, S. Heidelberg and S. Typhimurium
- Other CMY genes ranged between 0.02% and 0.12% each year

bla<sub>CMY-4</sub> bla<sub>CMY-44</sub> bla<sub>CMY-54</sub> bla<sub>CMY-61</sub>



#### Follow-up to Emerging Stories – XDR Salmonella I 4,[5],12:i:-

#### The number of XDR Salmonella I 4,[5],12:i:- isolates decreased since 2023.

• Extensively drug resistant (XDR) non-typhoidal Salmonella express resistance to ampicillin, ceftriaxone, ciprofloxacin, azithromycin and trimethoprim sulfamethoxazole

|      |          | Age       |           |             |                   |
|------|----------|-----------|-----------|-------------|-------------------|
| Year | # of XDR | 0-2 years | 3-9 years | 10-19 years | 20 years and over |
| 2020 | 0        | N/A       | N/A       | N/A         | N/A               |
| 2021 | 8        | 5         | 0         | 0           | 3                 |
| 2022 | 16       | 6         | 1         | 1           | 8                 |
| 2023 | 19       | 2         | 4         | 0           | 13                |
| 2024 | 13       | 4         | 0         | 1           | 8                 |

• In 2024, **all** isolates were from stool samples, except **two** isolates from people 20 years and over were from urine samples

### Take Away Messages – Human Salmonella

- Extremely high resistance to ciprofloxacin in typhoidal Salmonella
- Increasing frequency of resistance to ciprofloxacin and resistance to ampicillin in non-typhoidal *Salmonella*
- Variation in Salmonella antimicrobial resistance due to region and serovar are important to consider
- Overall ESBL genes in human non-typhoidal Salmonella are increasing with bla<sub>CTX-M-65</sub> and bla<sub>CTX-M-55</sub> increasing between 2020 and 2024

### Human Campylobacter



#### Most Campylobacter infections do NOT require treatment with antimicrobials.

- Campylobacter infections most commonly cause self-limiting diarrhea
  - Treatment with antimicrobials is not required or recommended
- Treatment with antimicrobials is considered:
  - When clinical signs are severe or prolonged
    - >6 diarrheal episodes/day, bloody diarrhea, diarrhea lasting >1 week, persistent fever
  - When patient is immunocompromised
  - Culture and susceptibility testing directed treatments include azithromycin or ciprofloxacin (alternative)

#### Campylobacter has a high incidence rate in Canadians.

• Incidence rates of Canadians with Campylobacter in 2023

|               | 2023 Incidence Rates<br>(Cases/100,000 population) |  |  |
|---------------|----------------------------------------------------|--|--|
| Campylobacter | 19.8                                               |  |  |

- Source of data Canadian Notifiable Disease Surveillance System (CNDSS)
   Notifiable Diseases Online
  - The 2023 data from Manitoba were not available at time of data preparation. The population of this province was removed for rate calculation (CNDSS note).

## FoodNet Canada (FNC), the integrated sentinel site surveillance network for enteric disease in Canada.

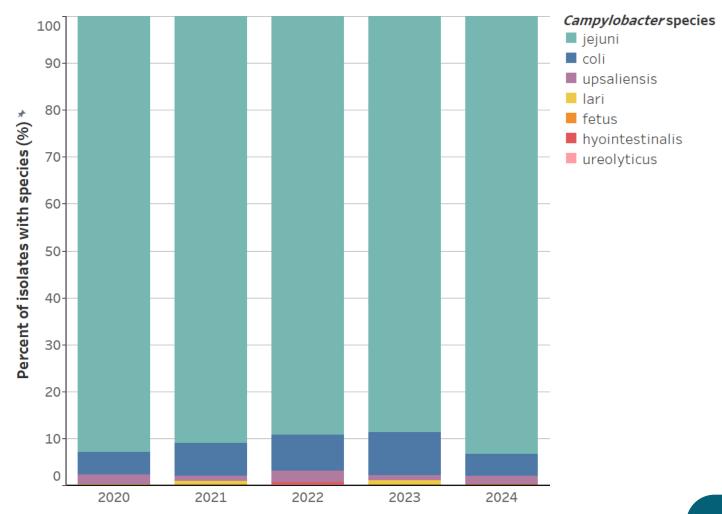
 Campylobacter isolates forwarded for antimicrobial susceptibility testing (AST) are a subset of all FNC Campylobacter cases

 Some laboratories within various FNC sentinel sites have implemented culture independent diagnostic testing for Campylobacter, which can impact the number of isolates that are culture confirmed and undergo AST

 Tested using broth microdilution for susceptibility to 9 antimicrobials in 7 antimicrobial classes

<1% of cases were excluded due to unresolved data discrepancies</li>

Data from 2020-2024 are presented with all sentinel sites combined


IMPORTANT NOTE – Data for 2023 and 2024 are preliminary and subject to change

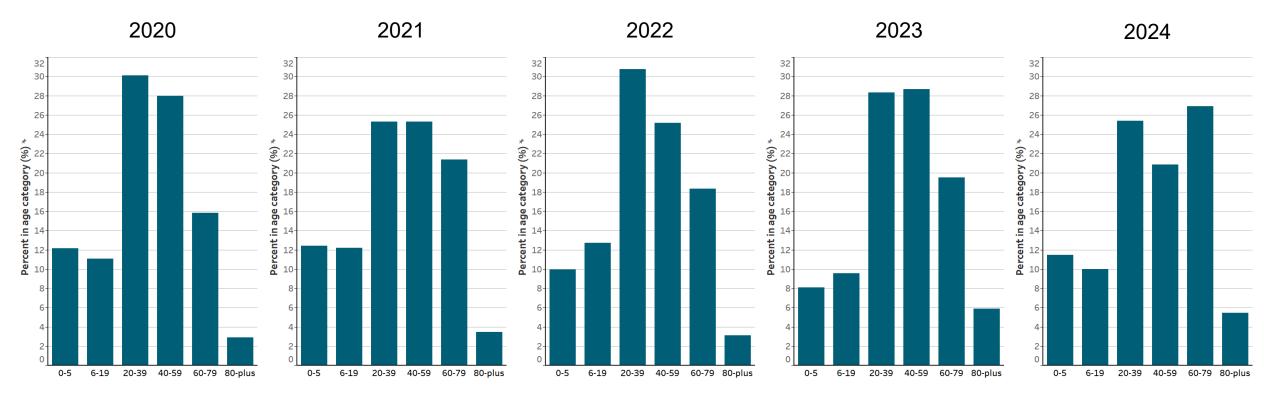


About FoodNet Canada - Canada.ca

#### C. jejuni is the predominant Campylobacter species in humans.

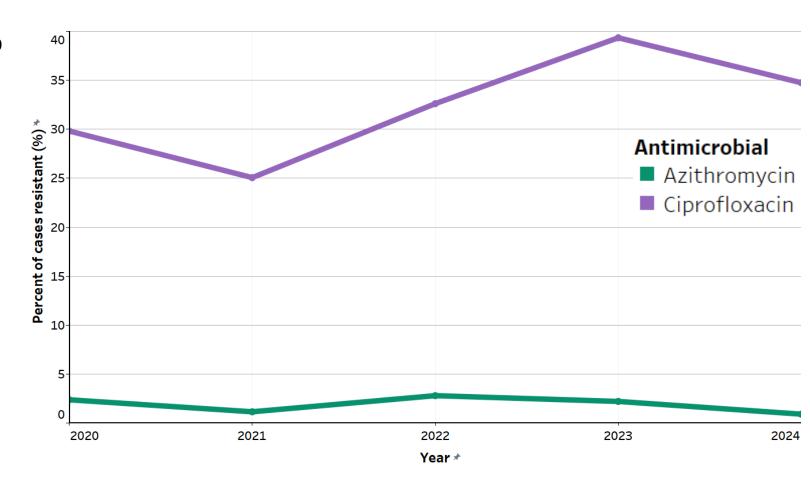
- In 2024, 93% of the cases were *C. jejuni*
- Between 2020 and 2024, C. jejuni ranged between 89% and 93% of all cases
- Campylobacter predominantly causes gastrointestinal infections (99% stool in 2024)




#### Human Campylobacter – Gender

#### More Campylobacter cases in males than females.

- In 2024, 58% of the cases were in males
- Between 2020 and 2024, males with Campylobacter ranged between 54% and 59% of all cases


#### Variable distribution of age categories in *Campylobacter* cases.

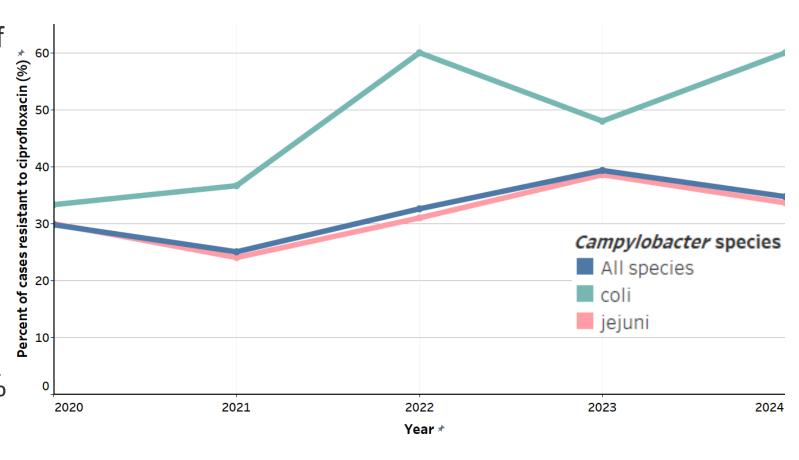
Distribution of age category in human Campylobacter cases



#### Higher resistance to ciprofloxacin compared to azithromycin.

- Variable and high resistance to ciprofloxacin, 35% in 2024
- Low to very low resistance to azithromycin, 0.9% in 2024

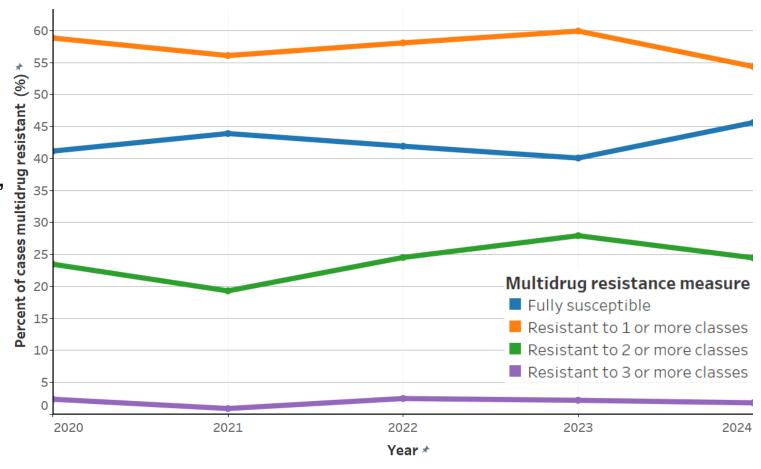



#### Higher resistance to azithromycin in C. coli.

- Compared to the frequency of azithromycin resistance in all Campylobacter species
  - C. coli was variable and generally substantially higher (Note: smaller number of cases, some years <20 cases)</li>
  - *C. jejuni* was generally lower, 0.3% in 2024

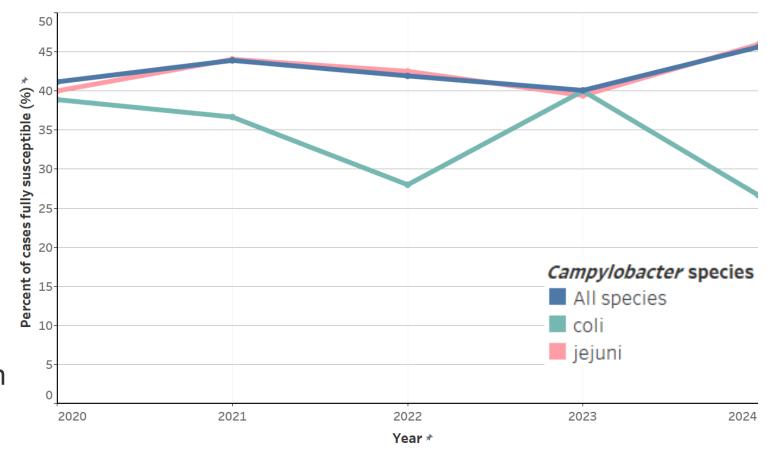


#### Higher resistance to ciprofloxacin in *C. coli*.


- Compared to the frequency of ciprofloxacin resistance in all Campylobacter species
  - C. coli was variable and higher (Note: smaller number of cases, some years <20 cases)</li>
  - *C. jejuni* was **similar**, 34% in 2024

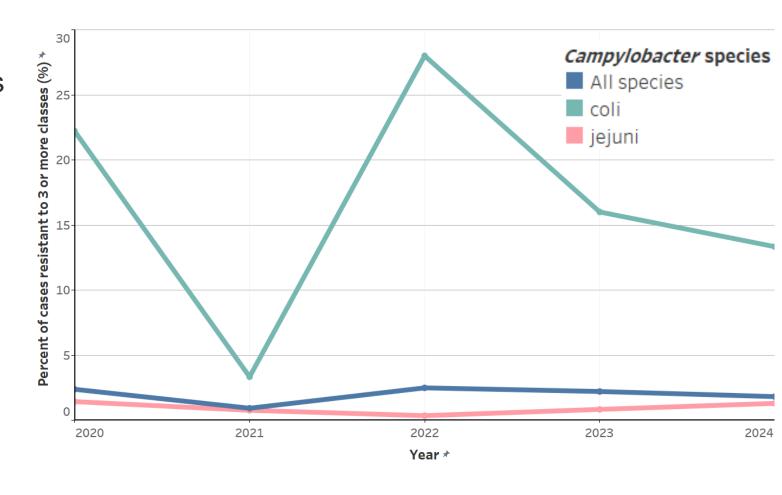


#### Resistance to 3 or more antimicrobial classes was low to very low.


 Variable full susceptibility, 46% in 2024

 Relatively stable and low to very low resistance to 3 or more classes, 1.8% in 2024




#### In general, less *C. coli* cases were fully susceptible.

- Compared to the frequency of fully susceptible in all Campylobacter species
  - C. coli was variable and generally lower (Note: smaller number of cases, some years <20 cases)</li>
  - *C. jejuni* was **similar**, 46% in 2024



#### Higher resistance to 3 or more classes in *C. coli* cases.

- Compared to the frequency of resistance to 3 or more classes in all Campylobacter species
  - C. coli was variable and higher (Note: smaller number of cases, some years <20 cases)</li>
  - C. jejuni was generally lower, 1% in 2024



# Cases with resistance to 5 or more antimicrobial classes are infrequent; could complicate treatment, if required.

- Maximum resistance seen between 2020 and 2024 was resistance to 6 antimicrobial classes (n=1, C. coli; 2020)
  - Resistance to aminoglycosides, lincosamides, macrolides, phenicols, quinolones and tetracyclines including resistance to 8 antimicrobials
- Resistance to 5 antimicrobial classes was also **infrequent** between 2020 and 2024 (n=4, *C. coli;* 2022 (n=2) and 2024 (n=1), and *C. jejuni;* 2021 (n=1))
  - All 4 isolates reported resistance to the same antimicrobial classes: aminoglycosides, lincosamides, macrolides, quinolones and tetracyclines including resistance to 7 antimicrobials

### Take Away Messages – Human Campylobacter

- C. jejuni is the predominant Campylobacter species in humans
- Higher resistance to ciprofloxacin (2024; 35%) compared to azithromycin (2024; 0.9%)
- Resistance to 3 or more classes was low to very low
- More resistance in *C. coli* compared to *C. jejuni*
- Cases with resistance to 5 or more antimicrobial classes are infrequent, however, they could complicate treatment, if required

#### Where can I find more information?

#### CIPARS interactive data visualizations (Health Infobase)

https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-programantimicrobial-resistance-surveillance-cipars/interactive-data.html

#### **CARSS** interactive data visualizations (Health Infobase

Human Salmonella: https://health-infobase.canada.ca/carss/amr/results.html?ind=13

#### CIPARS web page

https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-programantimicrobial-resistance-surveillance-cipars.html

#### **FNC** web page

https://www.canada.ca/en/public-health/services/surveillance/foodnet-canada.html

#### **FNC interactive data visualizations (Health Infobase)**

https://health-infobase.canada.ca/foodnet-canada/

### Acknowledgements

- NML Division of Enteric Diseases and PulseNet Canada
- Provincial Public Health Laboratories
- FoodNet Canada Sentinel Sites (Campylobacter)
- National Enteric Surveillance Program (NESP)

### Questions

Contact Information for CIPARS
Human Component

Dr. Melissa MacKinnon melissa.mackinnon@phac-aspc.gc.ca



